Mark Scheme - 3.4 Chemistry of the d-block Transition Metals

1.

(a) (i) Number of moles of EDTA =
$$\underline{19.20 \times 0.010}_{1000}$$
 = $1.92 \times 10^4 / 0.000192$ [1]

- error carried forward throughout (a)

(ii)
$$1.92 \times 10^4 / 0.000192$$
 [1]

(iii) Concentration =
$$\frac{1.92 \times 10^{-4} \times 1000}{50}$$
 = $3.84 \times 10^{-3} / 0.00384 \text{ mol dm}^{-3}$ (1)

Concentration =
$$3.84 \times 10^{-3} \times 63.5 = 0.244 \text{ g dm}^{-3}$$
 (1) [2]

(iv) % Cu =
$$\frac{0.244 \times 100}{11.56}$$
 = 2.11 [1]

(b) Transition elements have either a partly filled 3d sub-shell or form ions that have a partly filled 3d sub-shell (1) However copper forms Cu²⁺ ions that are '3d⁹' / partly filled 3d sub-shell (1) whereas Zn²⁺ ions are '3d¹⁰' / full 3d sub-shell (1) - any 2 from 3 [2]

QWC Organisation of information clearly and coherently; use of specialist vocabulary where appropriate. [1]

(c)

Complex ion	Shape	Colour
[CuCl ₄] ²⁻	tetrahedral	yellow / lime green
$\left[\text{Cu(NH}_3)_4 (\text{H}_2\text{O})_2 \right]^{2+}$	octahedral	deep blue

- (d) The more negative the ΔH_f value the more stable the oxide (1) PbO is relatively the more stable / CuO is relatively the less stable (1) - must have the first mark to get second
- (e) (i) Any TWO from
 variable oxidation states
 partially filled 3d energy levels
 ability to adsorb 'molecules'
 ability to form complexes with reacting molecules / temporary / co-ordinate bonds

One mark for each correct response [2]

(ii) e.g. to allow lower pressures / temperatures use recyclable catalysts - needs qualifying longer lasting / less toxic catalysts [1]

Total [15]

[2]

2.

(a)

H:0:0:H

(b)	$20 \text{ dm}^3 \text{ oxygen} = 0.83 \text{ mol}$ (1)						
	Mole	$s H_2O_2 = 1.67$ and $[H_2O_2] = 1.67$ mol dm ⁻³ (1)	[2]				
(c)	Variable oxidation states / partially filled 3d energy levels /ability to adsorb 'molecules' / form complexes (or temporary bonds) with reacting molecules (Accept any two answers) Do not accept 'empty / unfilled d-orbitals'	to [2]					
	(ii)	3d orbitals split by ligands (1)					
		Three d-orbitals have lower energy, two have higher energy (1)					
		Electrons absorb (visible light) energy to jump from lower level to higher level (1)					
		The colour is that due to the remaining / non-absorbed frequencies (Appropriate diagrams are acceptable alternatives)					
			[4]				
		QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning	[1]				
(d)	(i)	$MnO_4^- + 8H^+ + 5e^ Mn^{2+} + 4H_2O$	[1]				
	(ii)	$5H_2O_2 + 6H^+ + 2MnO_4^- \longrightarrow 2Mn^{2+} + 5O_2 + 8H_2O$	[2]				
		(Mark consequentially from $(i) - 1$ mark if formulae correct but equation not balanced properly)					
	(iii)	Moles MnO ₄ ⁻ = $\frac{0.02 \times 14.8}{1000}$ = 2.96 × 10 ⁻⁴ (1)					
		Moles $H_2O_2 = 7.40 \times 10^{-4}$ (1)					
		Concentration $H_2O_2 = \frac{7.40 \times 10^{-4}}{0.020} = 0.037 \text{ mol dm}^{-3}$ (1)	[3]				
(e)	Oxidation state of oxygen starts at -1 (in peroxide) (1) Oxidation state in water is -2 (reduced) oxidation state in oxygen is 0 (oxidised) (1)						
			[2]				

[1]

Provides an alternative pathway (1)
with lower activation energy / more particles have energy above E_A (1)
[2]

any example e.g. [1] iron for Haber process / manufacture of ammonia vanadium(V) oxide in Contact process / manufacture of sulfuric acid platinum / palladium / rhodium in catalytic converters / to remove toxic gases from exhaust fumes nickel in hydrogenation of alkenes / unsaturated oils

4.

- (a) (i) Species with lone pair that can bond to a metal atom/ion (1) [1]
 - (ii) Must clearly show which atoms are bonded and the 3D structure 1 mark each (2) [2]

H₂O 90° OH₂
Cu²⁺ 90°
OH₂
OH₂O

(iii) Ligands cause d-orbitals to split into three lower and two higher (1) Electrons move from lower level to higher level by absorbing some frequencies (1)

Light not absorbed gives colour seen (1) [3]

- (iv) $[Cu(NH_3)_4(H_2O)_2]^{2+}$ (1) Royal blue (1) [2]
- (b) (i) $K_p = \frac{P_{PCl_2}P_{Cl_2}}{P_{PCl_2}}$ do not accept if [] included [1]
 - (ii) I. 1.3×10^5 (Pa) [1]
 - II. $P_{PCI5} = 3.0 \times 10^5 1.3 \times 10^5 = 1.7 \times 10^5$ (1) (ecf from part I) $K_p = (1.3 \times 10^5 \times 1.3 \times 10^5) / 1.7 \times 10^5 = 9.9 \times 10^4$ (1)

Pa (1) [3]

- III. Endothermic as equilibrium shifts to products when temperature increases [1]
- (c) SiCl₄ + 2H₂O \rightarrow SiO₂ + 4HCl OR SiCl₄ + 4H₂O \rightarrow Si(OH)₄ + 4HCl (1)

Silicon has available empty d-orbitals whilst carbon does not / Silicon can expand its octet whilst carbon cannot (1)

Total [16]

[2]

(a)	(sodi	ie of any commercially/ industrially important chlorine containing compound e.g. ium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as lyst in halogenation				
	20,000	- do not accept CFCs		[1]		
(b)	(i)	$K_c = \frac{[HI]^2}{[H_2][I_2]}$ must	t be square brackets	[1]		
	(ii)	$K_c = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-3}$	follow through error (ft)	[1]		
	(iii)	K₀ has no units	ft	[1]		
	(iv)	when temperature increases K_c increases (1)				
		this means equilibrium has moved to RHS / increasing temperature favours endothermic reaction (1)				
		therefore ΔH for forward read (mark only awarded if markin	[3]			
(c)	(i)	+2		[1]		
	(ii)	co-ordinate/ dative (covalent)		[1]		
	(iii)	pink is $[Co(H_2O)_6]^{2+}$ and blue is $[CoCl_4]^{2-}$ (1)				
		(ligand is) Cl⁻ (1)				
		(addition of HCl sends) equili	brium to RHS (1)	[3]		
	(iv)	[Co(H ₂ O) ₆] ²⁺ shown as octahe	edral [with attempt at 3D] (1)			
		[CoCl ₄] ²⁻ shown as tetrahedra	al/ square planar (1)	[2]		
				Total [14]		